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ABSTRACT

In this paper, we construct the family of nonhomogeneous Poisson quadratic
stochastic operators defined on the countable sample space of nonnega-
tive integers and investigate their trajectory behavior. Such operators
can be reinterpreted in terms of of evolutionary operator of free pop-
ulation. We show that nonhomogeneous Poisson quadratic stochastic
operators are regular transformations.

Keywords: Ergodic hypothesis, Poisson distribution, Quadratic stochas-
tic operator.

1. Introduction

LetX be a countable infinite state space, F be σ-algebra onX, and S(X,F)
be the set of all probability measures on a measurable space (X,F). Let
{P (i, j, A) : i, j ∈ X,A ∈ F} be a family of functions on X × X × F such
that P (i, j, ·) ∈ S(X,F) and P (i, j, A) = P (j, i, A) for any fixed i, j ∈ X, and
A ∈ F . We consider a nonlinear transformation called quadratic stochastic
operator (QSO) V : S(X,F)→ S(X,F) defined by

(V λ)(A) =

∫
X

∫
X

P (i, j, A)dλ(i)dλ(j). (1)



Hamzah, N. Z. A. and Ganikhodjaev, N.

where A ∈ F is an arbitrary measurable set.

If a state space X = {1, 2, · · · ,m} be a finite set and corresponding σ-
algebra F be a power set P(X), i.e., the set of all subsets of X, then the set of
all probability measures on (X,F) has the following form:

Sm−1 = {x = (x1, x2, · · · , xm) ∈ Rm : xi ≥ 0 for any i, and
m∑
i=1

xi = 1}. (2)

that is called a (m− 1)-dimensional simplex.

In this case, a probabilistic measure P (i, j, ·) for any i, j ∈ X is a discrete
measure with

∑m
k=1 P (ij, {k}) = 1, where P (ij, {k}) ≡ Pij,k and corresponding

QSO V has the following form

(V x)k =

m∑
i,j=1

Pij,kxixj . (3)

for any x ∈ Sm−1 and for all k = 1, · · · ,m, where

a)Pij,k ≥ 0. b)Pij,k = Pji,k for all i, j, k. c)

m∑
k=1

Pij,k = 1

.

Such operator can be reinterpreted in terms of evolutionary operator of
free population and in this form it has a fair history (see Bernstein (1924),
Ganikhodjaev (1993), Ganikhodjaev (1994), Ganikhodzhaev and Eshmamatova
(2006),Ganikhodzhaev et al. (2011), Jenks (1969), Kesten (1970), Losert and
Akin (1983), Lyubich (1992), and Volterra (1931)).

In this paper, we construct the family of nonhomogeneous Poisson quadratic
stochastic operators defined on the countable sample space of nonnegative in-
tegers and investigate their trajectory behaviors.

2. A Poisson QSO

Let X = {0, 1, · · · } be a countable sample space and corresponding σ-
algebra F be a power set of X. A probability measure µ is defined on each
singleton {k}, where k = 0, 1, · · · and it is written as µ(k) instead of µ({k}).
Assume that {P (i, j, k) : i, j, k ∈ X} be a family of functions defined on X ×
X ×F , that satisfy the following conditions:
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i) for any fixed i, j ∈ X, P (i, j, ·) is a probability measure on (X,F), and
ii) for any fixed i, j ∈ X, P (i, j, k) = P (j, i, k) ≡ Pij,k, where k ∈ X.

In this case, a QSO (1) on measurable space (X,F) is defined as follows for
arbitrary measure µ ∈ S(X,F),

V µ(k) =

∞∑
i=0

∞∑
j=0

Pij,kµ(i)µ(j). (4)

where k ∈ X.

In this paper, we consider a Poisson QSO. Remind that a Poisson distribu-
tion Pλ with a positive real parameter λ is defined on X by the equation

Pλ(k) = e−λ
λk

k!
. (5)

for any k ∈ X.

Let S(X,F) be a set of all probability measures on (X,F) and let for any
i, j ∈ X,P (i, j, ·) ∈ S(X,F) be a probability measure on (X,F).

Definition 2.1. A quadratic stochastic operator V (4) is called a Poisson QSO
if for any i, j ∈ X, the probability measure P (i, j, ·) is the Poisson distribution
Pλ(i,j) with positive real parameters λ(i, j), where λ(i, j) = λ(j, i).

Let Λ = {λ(i, j) : i, j ∈ X} be a set of all possible values λ(i, j) when i, j
run the set X.

Definition 2.2. We call a Poisson QSO V (4) homogeneous, if |Λ| = 1, i.e.,
λ(i, j) = λ, and for any i, j ∈ X, Pij,k = e−λ λ

k

k! .

In this paper, we study about nonhomogeneous Poisson QSO.

3. Ergodicity and Regularity of QSO

Let us consider a QSO V (4) defined on countable set X. Assume {V nµ :
n = 0, 1, 2, · · · } is the trajectory of the initial point µ ∈ S(X,F), where
V n+1µ = V (V nµ) for all n = 0, 1, 2, · · · , with V 0µ = µ.

Definition 3.1. A measure µ ∈ S(X,F) is called a fixed point of a QSO V if
V µ = µ.
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Let Fix(V ) be the set of all fixed points of QSO V.

Definition 3.2. A QSO V is called regular if for any initial point µ ∈ S(X,F)
the limit

lim
n→∞

V n(µ). (6)

exists.

Proposition 3.1. A homogeneous Poisson QSO is a regular transformation.

Proof It is evident that for arbitrary measure µ ∈ S(X,F)

V µ(k) =

∞∑
i=0

∞∑
j=0

Pij,kµ(i)µ(j) = e−λ
λk

k!
. (7)

where k ∈ X, i.e., V µ = Pλ. Thus V nµ = Pλ for any n = 1, 2, · · · , i.e.,
Fix(V ) = Pλ and

lim
n→∞

V n(µ) = Pλ. (8)

In measure theory, there are various notions of the convergence of measures:
weak convergence, strong convergence, total variation convergence. Below we
consider strong convergence.

Definition 3.3. For (X,F) a measurable space, a sequence µn is said to con-
verge strongly to a limit µ if

lim
n→∞

µn(A) = µ(A). (9)

for every set A ∈ F .

If X is a countable set, then a sequence µn converges strongly to a limit µ
if and only if

lim
n→∞

µn(k) = µ(k). (10)

for every singleton k ∈ X.

In statistical mechanics, the ergodic hypothesis proposes a connection be-
tween dynamics and statistics. In the classical theory, the assumption was
made that the average time spent in any region of phase space is proportional
to the volume of the region in terms of the invariant measure, more generally,
that time averages may be replaced by space averages. For nonlinear dynamical
systems, (Ulam, 1960) suggested as analogue of measure-theoretic ergodicity,
following ergodic hypothesis:
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Definition 3.4. A nonlinear operator V defined on S(X,F) is called ergodic,
if the limit

lim
n→∞

1

n

n−1∑
k=0

V kλ. (11)

exists for any λ ∈ S(X,F ).

On the basis of numerical calculations for quadratic stochastic operators
defined on S(X,F ) with finiteX, (Ulam, 1960) has conjectured that the ergodic
theorem holds for any such QSO V. In 1978, (Zakharevich, 1978) has proved
that this conjecture is false in general. He considered following operator on S2

x1
′ = x1

2 + 2x1x2,

x2
′ = x2

2 + 2x2x3,

x3
′ = x3

2 + 2x1x3.

(12)

and proved that it is non-ergodic transformation. Later in 2004, (Ganikhod-
jaev and Zanin, 2004) has established sufficient condition to be non-ergodic
transformation for QSO defined on S2.

In next section, we show that Ulam’s conjecture is true for some class of
nonhomogeneous Poisson QSO.

4. Ergodicity and Regularity of Poisson QSO

Let V (4) be a nonhomogeneous Poisson QSO, i.e., |Λ| > 1. Assume that
Λ = {λ0, λ1, · · · , λm−1}, i.e., |Λ| = m. It is known that the setX of all nonnega-
tive integers forms a semigroup with operation of addition. Let {N0, N1, · · · , Nm−1}
be a partition of the set X, where Ns = {n ∈ X : n = s(modm)}, with
0 ≤ s ≤ m − 1. We consider the following class of nonhomogeneous Poisson
QSO such that

Pij,k = e−λs
λks
k!

if i+ j = s(mod m). (13)

For any measure µ ∈ S(X,F), let

As(µ) =
∑
n∈Ns

µ(n). (14)
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where
∑m−1
s=0 As(µ) = 1.

Then, for any initial measure µ ∈ S(X,F), we have

V µ(k) =

∞∑
i=0

∞∑
j=0

Pij,kµ(i)µ(j) =

m−1∑
s=0

 ∞∑
i+j=s(modm)

Pij,kµ(i)µ(j)


=

m−1∑
s=0

e−λs
λks
k!

 ∞∑
i,j=0:i+j=s(modm)

µ(i)µ(j)


=

m−1∑
s=0

e−λs
λks
k!

 m−1∑
p,q=0:p+q=s(modm)

Ap(µ)Aq(µ)

 .
and

V 2µ(k) =

∞∑
i=0

∞∑
j=0

Pij,kV µ(i)V µ(j) =

m−1∑
s=0

 ∞∑
i+j=s(modm)

Pij,kV µ(i)V µ(j)


=

m−1∑
s=0

e−λs
λks
k!

 ∞∑
i,j=0:i+j=s(modm)

V µ(i)V µ(j)


=

m−1∑
s=0

e−λs
λks
k!

 m−1∑
p,q=0:p+q=s(modm)

Ap(V µ)Aq(V µ)

 .
By simple calculations, we have

As(V µ) =

m−1∑
s=0

As(Pλk)

 m−1∑
p,q=0:p+q=k(modm)

Ap(µ)Aq(µ)

 . (15)

where Pλk is the Poisson distribution with parameter λk. Thus by induction
for sequence V n(µ) we produce the following recurrent equation

V n+1µ(k) =

m−1∑
s=0

e−λs
λks
k!

 m−1∑
p,q=0:p+q=s(modm)

Ap(V
nµ)Aq(V

nµ)

 . (16)

where n = 0, 1, · · · ,.
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Besides, for parameters {As(V nµ) : s = 0, 1, · · · ,m − 1} we have the fol-
lowing recurrent equations

As(V
n+1µ) =

m−1∑
s=0

As(Pλk)

 m−1∑
p,q=0:p+q=k(modm)

Ap(V
nµ)Aq(V

nµ)

 . (17)

where s = 0, 1, · · · ,m− 1.

It is evident that the limit behavior of the recurrent equation (16) is fully de-
termined by limit behavior of recurrent equations (17). Since

∑m−1
s=0 As(V

nµ) =
1 and As(V nµ) ≥ 0 for any s = 0, 1, · · · ,m− 1, the recurrent equations ((16))
one can consider as QSO W defined on m− 1 dimensional simplex Sm−1.

Thus, the problem of investigating QSO defined on countable state space is
reduced to problem of investigation the QSO defined on finite state space. It
is evident that the nonhomogeneous QSO be a regular transformations if and
only if the QSO W is regular transformation.

In (Ganikhodjaev and Hamzah, 2014), the authors proved that nonhomoge-
neous Poisson QSO with m = 2 and m = 3 are regular transformations. Using
numerical analysis one can show that the QSO W is regular transformation for
any m. Below we consider the cases m = 4 and m = 5.

4.1 Nonhomogeneous Poisson QSO with m = 4

For m = 4, using simple calculations, one can show that

A0(λ) = 1+e−2λ+2e−λ cos(λ)
4 , A1(λ) = 1−e−2λ−2e−λ sin(λ)

4 ,

A2(λ) = 1+e−2λ−2e−λ cos(λ)
4 , A3(λ) = 1−e−2λ+2e−λ sin(λ)

4 .

(18)

V n+1µ(k) = e−λ0 λ
k
0

k!

[
A2

0(V nµ) + 2A1(V nµ)A3(V nµ) +A2
2(V nµ)

]
+ e−λ1 λ

k
1

k! [2A0(V nµ)A1(V nµ) + 2A2(V nµ)A3(V nµ)]

+ e−λ2 λ
k
2

k!

[
A2

1(V nµ) + 2A0(V nµ)A2(V nµ) +A2
3(V nµ)

]
+ e−λ3 λ

k
3

k! [2A0(V nµ)A3(V nµ) + 2A1(V nµ)A2(V nµ)] .

(19)
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and

As(V
n+1µ) = As(λ0)

[
A2

0(V nµ) + 2A1(V nµ)A3(V nµ) +A2
2(V nµ)

]
+ As(λ1) [2A0(V nµ)A1(V nµ) + 2A2(V nµ)A3(V nµ)]

+ As(λ2)
[
A2

1(V nµ) + 2A0(V nµ)A2(V nµ) +A2
3(V nµ)

]
+ As(λ3) [2A0(V nµ)A3(V nµ) + 2A1(V nµ)A2(V nµ)] .

(20)

where s = 0, 1, 2, 3.

Starting from arbitrary initial data we iterate the recurrence equations (20)
and observe their behavior after a large number of iterations. The resultant
diagrams in the space (λ0, λ1) with 0 < λ0, λ1 ≤ 2 and some fixed λ2 and λ3,
are shown in figure below.

Figure 1: Limit behavior of the dynamical system (20) 0 < λ0, λ1 ≤ 2 and some fixed values λ2

and λ3.

In this Figure 1, blue color corresponds to converges of the trajectory.
Note that if these parameters are very small, then any trajectory converges
to (1, 0, 0, 0), while if they are too large, then any trajectory converges to
( 1
4 ,

1
4 ,

1
4 ,

1
4 ).

Thus, for any initial measure µ, we have

lim
n→∞

As(V
nµ) = x∗s. (21)

with s = 0, 1, 2, 3. Then passing to limit in (19), we have that for any singleton
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k

lim
n→∞

V n+1µ(k) = e−λ0
λk0
k!

[
x∗0

2 + 2x∗1x
∗
3 + x∗2

2
]

+ e−λ1
λk1
k!

[2x∗0x
∗
1 + 2x∗2x

∗
3]

+ e−λ2
λk2
k!

[
x∗1

2 + 2x∗0x
∗
2 + x∗3

2
]

+ e−λ3
λk3
k!

[2x∗0x
∗
3 + 2x∗1x

∗
2] .

Thus, for any initial measure µ, the strong limit of the sequence V nµ is
exists and equal to the convex linear combination

limn→∞ V nµ =
[
x∗0

2 + 2x∗1x
∗
3 + x∗2

2
]
P (λ0) + [2x∗0x

∗
1 + 2x∗2x

∗
3]P (λ1)

+
[
x∗1

2 + 2x∗0x
∗
2 + x∗3

2
]
P (λ2) + [2x∗0x

∗
3 + 2x∗1x

∗
2]P (λ3).

(22)
of the four Poisson measures {Pλs : s = 0, 1, 2, 3}. As corollary we have the
following statement:

Proposition 4.1. Nonhomogeneous Poisson QSO with four different parame-
ters is a regular and respectively ergodic transformation with respect to strong
convergence.

4.2 Nonhomogeneous Poisson QSO with m = 5

For m = 5, using simple but tedious calculations, one can show that

A0(λ) =
2

5

[
e−λ+λ cos( 2π

5 ) cos

(
λ sin

(
2π

5

))
+ e−λ−λ cos(π5 ) cos

(
λ sin

(π
5

))
+

1

2

]
,

A1(λ) =
1

5[cos
(
2π
5

)
+ cos(π5 )]

{cos

(
2π

5

)
+ cos

(π
5

)
+ e−λ−λ cos(π5 )

[
sin
( π

10
+ λ sin

(π
5

))
− sin

( π
10
− λ sin

(π
5

))
− sin

(
3π

10
+ λ sin

(π
5

))
− cos

(
λ sin

(π
5

))]
+ e−λ+λ cos(π5 )[

sin

(
3π

10
+ λ sin

(
2π

5

))
− sin

(
3π

10
− λ sin

(
2π

5

))
− sin

(
π

10
− λ sin

(
2π

5

))
+ cos

(
λ sin

(π
5

))]
},
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A2(λ) =
1

5[cos( 2π
5 ) + cos(π5 )]

{cos

(
2π

5

)
+ cos

(π
5

)
+ e−λ−λ cos(π5 )

[
sin

(
3π

10
+ λ sin

(π
5

))
− sin

(
3π

10
− λ sin

(π
5

))
− sin

( π
10

+ λ sin
(π

5

))
+ cos

(
λ sin

(π
5

))]
+ e−λ+λ cos( 2π

5 )[
sin

(
π

10
+ λ sin

(
2π

5

))
− sin

(
π

10
− λ sin

(
2π

5

))
− sin

(
3π

10
− λ sin

(
2π

5

))
− cos

(
λ sin

(
2π

5

))]
,

A3(λ) =
1

5[cos( 2π
5 ) + cos(π5 )]

{cos

(
2π

5

)
+ cos

(π
5

)
+ e−λ−λ cos(π5 )

[
sin

(
3π

10
+ λ sin

(π
5

))
− sin

(
3π

10
− λ sin

(π
5

))
− sin

( π
10

+ λ sin
(π

5

))
− cos

(
λ sin

(π
5

))]
+ e−λ+λ cos(π5 )[

sin

(
3π

10
+ λ sin

(
2π

5

))
− sin

(
3π

10
− λ sin

(
2π

5

))
− sin

(
π

10
− λ sin

(
2π

5

))
+ cos

(
λ sin

(
2π

5

))]
},

A4(λ) =
1

5[cos( 2π
5 ) + cos(π5 )]

{cos

(
2π

5

)
+ cos

(π
5

)
+ e−λ−λ cos(π5 )

[
sin
( π

10
+ λ sin

(π
5

))
− sin

( π
10
− λ sin

(π
5

))
− sin

(
3π

10
+ λ sin

(π
5

))
− cos

(
λ sin

(π
5

))]
+ e−λ+λ cos(π5 )[

sin

(
3π

10
+ λ sin

(
2π

5

))
− sin

(
3π

10
− λ sin

(
2π

5

))
− sin

(
π

10
− λ sin

(
2π

5

))
+ cos

(
λ sin

(π
5

))]
},

V n+1µ(k) = e−λ0 λ
k
0

k!

[
A2

0(V nµ) + 2A1(V nµ)A4(V nµ) + 2A2(V nµ)A3(V nµ)
]

+ e−λ1 λ
k
1

k!

[
A2

3(V nµ) + 2A0(V nµ)A1(V nµ) + 2A2(V nµ)A4(V nµ)
]

+ e−λ2 λ
k
2

k!

[
A2

1(V nµ) + 2A0(V nµ)A2(V nµ) + 2A2(V nµ)A4(V nµ)
]

+ e−λ3 λ
k
2

k!

[
A2

4(V nµ) + 2A0(V nµ)A3(V nµ) + 2A1(V nµ)A2(V nµ)
]

+ e−λ4 λ
k
3

k!

[
A2

2(V nµ) + 2A0(V nµ)A4(V nµ) + 2A1(V nµ)A3(V nµ)
]

(23)
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and

As(V
n+1µ) = As(λ0)

[
A2

0(V nµ) + 2A1(V nµ)A4(V nµ) + 2A2(V nµ)A3(V nµ)
]

+ As(λ1)
[
A2

3(V nµ) + 2A0(V nµ)A1(V nµ) + 2A2(V nµ)A4(V nµ)
]

+ As(λ2)
[
A2

1(V nµ) + 2A0(V nµ)A2(V nµ) + 2A2(V nµ)A4(V nµ)
]

+ As(λ3)
[
A2

4(V nµ) + 2A0(V nµ)A3(V nµ) + 2A1(V nµ)A2(V nµ)
]

+ As(λ4)
[
A2

2(V nµ) + 2A0(V nµ)A4(V nµ) + 2A1(V nµ)A3(V nµ)
]

(24)
where s = 0, 1, 2, 3, 4.

Starting from arbitrary initial data we iterate the recurrence equations (24)
and observe their behavior after a large number of iterations. The resultant
diagrams in the space (λ0, λ1) with 0 < λ0, λ1 ≤ 2 and some fixed λ2, λ3 and
λ4, are shown in figure below.

Figure 2: Limit behavior of the dynamical system (24) 0 < λ0, λ1 ≤ 2 and some fixed values
λ2, λ3, and λ4.

In this Figure 2, blue color corresponds to converges of the trajectory.
Note that if these parameters are very small, then any trajectory converges
to (1, 0, 0, 0, 0), while if they are too large, then any trajectory converges to
( 1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5 )

Thus we have proved the following statement.

Proposition 4.2. A nonhomogeneous Poisson QSO with five different param-
eters is a regular and respectively ergodic transformation with respect to strong
convergence.

Malaysian Journal of Mathematical Sciences 153



Hamzah, N. Z. A. and Ganikhodjaev, N.

Follow this line one can prove the regularity of nonhomogeneous Poisson
QSO for any m.

5. Conclusion

In this article, we present a construction of nonhomogeneous Poisson quadratic
stochastic operators with any finitely many different parameters λi and prove
regularity of these operators.
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